Regular spaces of small extent are ω-resolvable

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic Fuzzy Automaton on Subclasses of Fuzzy Regular ω-Languages

In formal language theory, we are mainly interested in the natural language computational aspects of ω-languages. Therefore in this respect it is convenient to consider fuzzy ω-languages. In this paper, we introduce two subclasses of fuzzy regular ω-languages called fuzzy n-local ω-languages and Buchi fuzzy n-local ω-languages, and give some closure properties for those subclasses. We define a ...

متن کامل

A family of resolvable regular graph designs

A regular graph design RGD(v; k; r) is a design on v points with blocks of size k and constant replication number r, such that any two points belong to either 1 or 1 +1 common blocks, for some constant 1. We investigate resolvable regular graph designs with block size 4. In particular we determine the spectrum of such designs for v 16.

متن کامل

Classifying ω-Regular Partitions

We try to develop a theory of ω-regular partitions in parallel with the theory around the Wagner hierarchy of regular ω-languages. In particular, we generalize a theorem of L. Staiger and K. Wagner to the case of partitions, prove decidability of all levels of the Boolean hierarchy of regular partitions over open sets, establish coincidence of reducibilities by continuous functions and by funct...

متن کامل

On resolvable spaces and groups Luis

It is proved that every uncountable !-bounded group and every homogeneous space containing a convergent sequence are resolvable. We nd some conditions for a topological group topology to be irresolvable and maximal.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2015

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm228-1-3